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SUMMARY 

Errors in the algorithms commonly employed by integrators and data systems 
for the measurement of peak areas and peak heights of overlapped peaks are re- 
evaluated for cases where one or both peaks is stailed. The errors due only to peak 
tailing (area ratio = 1) can be greater than 50% for peak area measurement by the 
perpendicular-drop algorithm; errors in peak height can be greater than 40%. Errors 
due to a combination of peak tailing and differences in peak size can exceed 200% 
for peak area and 80% for peak height. An empirical area equation, when used in 
conjunction with normal integration procedures, permits the accurate (< f 4%) 
quantitation of overlapping peaks, provided that the valley between the peaks is less 
than 45%. 

INTRODUCTION 

Gas and liquid chromatography are powerful methods for the quantitative 
analysis of multi-component mixtures. Unfortunately, as the number of components 
in a mixture increases, the probability that all components will be baseline resolved 
drops precipitously’J. Inevitably at least some of the partially resolved peaks will be 
of interest to the analyst. Thus, the quantitation of overlapping peaks is an important 
issue. 

The quantitation of chromatographic peaks requires the measurement of either 
peak height or peak area. While the manual or electronic measurement of peak 
heights and peak areas for baseline-resolved peaks is straightforward and accurate, 
the same measurement for partially resolved peaks is neither, due to the distortion 
caused by peak overlap. Although peak deconvolution methods have been devel- 
oped3-‘, the approach used by nearly all electronic integrators and most data systems 
(and the only approach available when manual measurements are made) is to ap- 
proximate the peak areas and peak heights of overlapped peaks by measurements 
made directly from the overlapping chromatogram. For peak areas, the perpendi- 
cular-drop and tangent-skimming methods are used on overlapping peaks with com- 
parable and disproportionate areas, respectively. For peak height, the apparent peak 
height is used in all cases. 

The accuracy of these integrator-data system approximations for overlapping 
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peaks has been evaluated extensively 8 - lo. It was found that peak height could be 
measured much more accurately than peak area for a given resolution and peak area 
ratio. Many refinements have been proposed, particularly for peak area measure- 
ment9, including the use of correction factors based on calculated errors’ l,l*. 

Unfortunately, although these overlapping peaks approximations have been 
evaluated in detail, previous researchers have assumed symmetric (Gaussian) peak 
profiles for the component peaks. However, it is clear from the chromatographic 
literature that many overlapping peak profiles frequently consist of asymmetric 
(tailed) chromatographic peaks. Our goals in the present study are (1) to re-evaluate 
the accuracy of these popular approximations for the measurement of peak area and 
peak height for overlapping peaks when one or both peaks are tailed; and (2) to 
investigate alternative approaches for the quantitation of overlapping peaks that do 
not require deconvolution. Because our emphasis is on the effect of peak asymmetry 
on overlapping peaks and not on the effect of relative peak size, which has already 
been extensively discussed (for overlapping Gaussian peaks)g*lo, we limited our stud- 
ies to overlapping peaks with area ratios of 4 or less. Thus our present study does 
not include a re-evaluation of the tangent skimming method, since this method is 
inappropriate under these circumstances. 

EXPERIMENTAL 

Computations. An Apple Macintosh computer programmed in BASIC was 
used for all calculations. 

Symmetric and asymmetric (tailed) peak models. Symmetric chromatographic 
peaks were generated using a normalized Gaussian function G(t), 

G(t) = A/ad(271)“] exp[ - (t - t$/20G2] (1) 

where A is the peak area, tG is the retention time, and do is the standard deviation 
of the peak. Tailed chromatographic peaks were generated using a normalized ex- 
ponentially modified Gaussian function EMG(t). The EMG function results from 
the convolution of a Gaussian function and an exponential decay function and can 
be expressed in a variety of ways l 3p1 5. The specific form we used was 

z 

EMG(t) = A/z exp[l/2(00/z)2 - (t-t&] 
s 

exp( -y”P)@@dy (2) 

-co 

where A is the peak area, tG and oo are the retention time and standard deviation of 
the Gaussian function respectively, z is the time constant from the exponential decay 
function, and z = (t - tG)/oG - CT&. The integral in eqn. 2 was evaluated as pre- 
viously described 16. Note that the ratio z/so is a fundamental measure of peak sym- 
metry. As r/so increases, the tailing of the chromatographic peak increases. As r/co 
approaches 0, the resulting peak approaches that of a Gaussian. 

Peak overlap simulations. A pair of overlapping peaks was simulated by adding 
the functions representing the individual chromatographic peaks. Four combinations 
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of overlapping peaks (symmetric-symmetric, tailed-tailed, tailed-symmetric, and 
symmetric-tailed) were examined for five area ratios (0.25, 0.5, 1, 2, and 4), five 
z/so ratios (0.5, 1, 2, 3, and 4), and several values of resolution, resulting in over 600 
pairs of overlapping peaks. Resolution was defined conventionally as Ato/ (vari- 
ance)+, where Ato = tc,2 - tG,l and c G2 and go2 + rz are the variance of a Gaussian 
and an EMG peak, respectively. A constant Gaussian contribution to the total vari- 
ance (fixed value of Go) was assumed for both peaks in every peak combination, 
although the EMG-EMG peak combinations were also examined from the point of 
view of constant total variance. Resolution values of 1.75, 1.5, 1.25, 1.125, 1, 0.875, 
0.625, 0.5, 0.375, and 0.25 were used in generating the data for this study. Although 
the resolution parameter proved useful in generating the data, it was found to be 
inadequate in describing peak overlap in cases where one or both peaks is tailed (see 
Results and discussion). 

Measurement of peak parameters. A search algorithm for the measurement of 
the retention time, peak height, and width and asymmetry of an isolated peak at any 
peak height fraction16 was modified to measure the pertinent parameters of overlap- 
ping peaks (see Fig. 2). in simulating the perpendicular-drop algorithm, peak areas 
were calculated by summation from the valley to the appropriate baseline. This is 
the method most commonly employed by chromatographic integrators and/or data 
systems. 

RESULTS AND DISCUSSION 

Preliminary considerations 
Peak modeling. The Gaussian and the exponentially modified Gaussian (EMG) 

functions were used as models for symmetric and asymmetric (tailed) chromato- 
graphic peaks. Four combinations of overlapping peaks, described below, were exam- 
ined in our evaluation of the perpendicular-drop and apparent-peak-height methods 
for peak area and peak height measurement. 

(1) Symmetric peak-symmetric peak. Neither peak is subject to asymmetric 
band-broadening processes. This combination has been the only one examined in 
nearly all prior studies of overlapping peaks. 

(2) Tailed peak-tailed peak. Both peaks are subject to asymmetric band-broad- 
ening processes. This is most likely to be observed when extra-column effects (which 
affect closely eluted peaks similarly) cannot be eliminated, although it could also be 
observed if both peaks participated in an irreversible retention mechanism. 

(3) Tailed peak-symmetric peak. Only the first peak is subject to an asymmetric 
band-broadening process. This could occur when an additional, irreversible (slow) 
retention mechanism is operative for one of the peaks. 

(4) Symmetric peak-tailed peak. Same as 3, except that the tailed peak is eluted 
last. 

To perform the simulations, values for the variances of the overlapping peaks 
must be assumed. We assumed a constant symmetric variance (oG*) for both peaks 
of the overlapped pair; this is consistent with the scenarios described above. Thus 
for Gaussian peaks the total variance (go*) was fixed, whereas for the EMG peaks 
the total variance (go” + r*) increased as the asymmetry ratio (r/co) was increased. 

The generation of overlapping peaks is illustrated in Fig. 1. Isolated symmetric 
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EMG (toiled) 

symmetric-symmetric 

Fig. 1. Overlapping peak simulations. Individual Gaussian and exponentially modified Gaussian (EMG) 
functions in Fig. la were offset and added to produce the symmetric peak-symmetric peak, tailed peak- 
tailed peak combinations shown in Fig. lb, as well as the tailed peak-symmetric peak and tailed peak- 
symmetric peak combinations that are not shown. 

Fig. 2. Graphical parameters of overlapping peaks, shown here for two tailed (EMG) peaks of equal area 
with an asymmetry ratio (r/uo) of 2. The relative valley is defined as the ratio of h,/h,, and is conveniently 
expressed as a percentage. The width, IV, and asymmetry factor, b/a, are shown at the peak height fraction, 

c( = 0.5. 

(Gaussian) and tailed (EMG, z/so = 2) peaks of unit area in Fig. la are merged with 
identical peaks to produce the symmetric-symmetric and tailed-tailed overlapping 
peak combinations in Fig. 1 b. The resolution, R,, defined as d tR/402 [where o2 is the 
total variance (second statistical moment)], was 0.625 for both pairs of overlapping 
peaks. 

Measures of peak overlap. Fig. lb illustrates the inadequacy of the present 
definition of resolution to describe the overlap of real chromatographic peaks. As 
noted long ago by Kirkland et al. l 7, the “apparent resolution” is better for the tailed 
peaks than for the symmetric peaks. This paradox can be explained in terms of the 
greater error in peak height and peak area estimation for the tailed peak pair which 
we discuss in detail shortly. 

Given the inadequacy of the resolution parameter to describe peak overlap, we 
decided to employ an empirical parameter, the relative valley, as illustrated in Fig. 
2. We define the relative valley as the ratio of the height of the valley, h.,, to the 
apparent height of the peak in question, hr. We will frequently report it as a per- 
centage, i.e., % (relative) valley = h,/h, x 100. Note that, unless the apparent peak 
heights are the same for two peaks of an overlapping peak pair (h,,r = hp,2), the 
relative valleys for the two peaks will not be the same. Finally, although the relative 
valley is empirical, it is an unambiguous parameter, one that is easily measured in 
practice. 

Errors in peak area and peak height measurements 
General comments. The results of our study show that errors in the perpendi- 

cular-drop and apparent peak height methods for the measurement of peak area and 
peak height of overlapping peaks are due primarily to two distinguishable effects, 
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one resulting from a difference in the relative size (areas) of the two peaks that 
overlap, the other resulting from the asymmetry of one or both peaks of the over- 
lapped pair. We shall denote these effects as size eficts and asymmetry eficts, re- 
spectively. Whereas the error in peak area will be negative for one peak and positive 
for the other, the error in peak height will be positive for both peaks. Obviously the 
error in either parameter becomes larger as the degree of peak overlap (relative valley) 
increases. 

Size effects. We examined the errors in peak height and peak area measurement- 
as a function of the relative areas of overlapping symmetric (Gaussian) peaks (and 
the degree of peak overlap). Because size effects have already been thoroughly dis; 
cussed9T10, we only summarize the results for purposes of comparison with the asym- 
metry effects. 

For all degrees of peak overlap (relative valley), errors in peak height are much 
smaller than corresponding errors in peak area. Errors in peak height are negligible, 
in fact, whenever the valley is less than 50%. For a given degree of peak overlap, 
errors in peak area are much more dependent on the area ratio than errors in peak 
height. The relative error in peak area and peak height was larger for the smaller of 
the overlapping peaks. Finally, the maximum errors due to size effects for peaks with 
an area ratio of four and a perceptible valley were -28% for peak area and + 7.5% 
for peak height (for the smaller peak in both cases). 

Asymmetry eficts. We examined the errors in peak height and peak area mea- 
surement as a function of the asymmetry (tailing) of one or both of the overlapping 
peaks, i.e., by examining tailed peak-tailed peak, tailed peak-symmetric peak, and 
symmetric peak-tailed peak combinations for peaks of equal size. Except for a recent 
reference to peak height 18, asymmetry effects have been completely ignored. 

Since we assumed a constant symmetric variance (co2) for all peaks, tailed 
peaks of unit area are shorter than corresponding symmetric peaks, as shown in Fig. 
la. It was thus impossible to produce overlapping peaks of equal area andequal peak 
height for the tailed peak-symmetric peak and symmetric peak-tailed peak combi- 
nations. Because area is more easily fixed for EMG peaks (see eqn. 2), our studies 
used peaks of equal area. 

(1) Tailed peak-tailed peak combinations. An example of the asymmetry effect 
is given in Fig. 3 for the tailed peak-tailed peak peak combination with s/oo = 3. 
Individual peaks were lightly traced, whereas the composite peak is shown with a 

Fig. 3. Illustration of the asymmetry effect for the tailed peak/tailed peak combination, shown here for 
two overlapped EMG peaks of equal area with an asymmetry ratio (s/go) of 3. Shaded area represents 
the error of the perpendicular-drop algorithm for peak area. The errors in peak area are -34% and 
+ 34% for the first and second peaks; the errors in peak height are 0.03% and 26%. 
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Fig. 4. Summary of asymmetry effects on peak area for two overlapping, tailed peaks of equal area. Filled 
symbols indicate results for the first peak, open symbols represent the second peak. Values for r/go 

(asymmetry ratio): 0.5 (0), I (U), 2 (A), and 4 (x). 

bold tracing. The shaded area represents the error of the perpendicular-drop algo- 
rithm, i.e., the amount by which the area of the first peak is underestimated and by 
which the area of the second peak is overestimated. The shaded area represents a 
substantial portion (34%) of the total area. Also, in contrast to the size effect, the 
asymmetry effect on peak height is significant (+ 26%), although only for the second 
peak. 

Asymmetry effects for the tailed peak-tailed peak combinations are summa- 
rized in Figs. 4 and 5 for peak area and peak height for z/co = 0.5, 1, 2, and 4. As 
expected, the greatest errors in peak area occurred for the peak combinations with 
r/oo = 4 (the greatest tailing). The maximum observed errors were -52% and 
+ 50% for the first and second peaks. (Slight differences are attributed to truncation 
errors in the integration of the second peak.) For peak height, the greatest errors for 

0 10 20 30 40 50 60 70 80 90 loo 
‘/. VALLEY 

Fig. 5. Summary of asymmetry effects on peak height for two overlapping, tailed peaks of equal area. 
Conditions as in Fig. 4. 
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the first peak (+ 5%) occurred for peak combinations with moderate tailing (T/Q 
= 1) whereas the greatest errors for the second peak +40%) occurred for the com- 
bination with maximum tailing. 

(2) Tailed peak-symmetric peak combinations. The asymmetry effects for this 
combination were slightly larger for peak area and moderately lower for peak height 
than for the tailed peak-tailed peak combination above, although the general pattern 
remained the same. For this reason no figures are included for these data, although 
they will be made available as supplementary material. The maximum errors in peak 
area were - 58% and + 56% for the first and second peaks. For peak height, the 
largest errors were + 5% for the first peak (at z/so = 0.5) and + 20% for the second 
peak (at r/go = 4). The difference between the asymmetry effects for the tailed 
peak-tailed peak and tailed peak-symmetric peak combinations is attributed to the 
fact that, although the first and second peaks were of equal area for both combina- 
tions, the first peak was shorter in the tailed peak-symmetric peak combination. 

(3) Symmetric peakktailed peak combinations. The results for the case where 
only the second peak is tailed were different from the results of the two previous 
combinations. Errors in peak area were much lower (f 12%), and the area of the 
first peak was overestimated instead of underestimated as in the previous combina- 
tions (and vice versa for the second peak). Errors in peak height were comparable 
for the first and second peaks (a maximum of +8%), and fell between the errors 
observed for the first and second peaks in previous combinations. Finally, errors in 
both peak area and peak height were much less dependent on the asymmetry of the 
second peak. 

The difference between the asymmetry effects for the symmetric peak-tailed 
peak combination and the first two combinations was not unexpected. By definition 
the leading edge of a tailed (EMG) peak more closely resembles a Gausian peak than 
the trailing edge. Since the leading edge of the EMG peak is the part that overlaps 
with the Gaussian in the symmetric peakktailed peak combination, we expect the 
asymmetry effects to be much less pronounced. The effects we do observe are attrib- 
uted to the somewhat smaller slope of the leading edge of the EMG peak due to the 
larger variance. We could predict similar results for two partially resolved Gaussian 
peaks, the second of which had a larger variance. 

In summary, the most serious errors in peak area and peak height resulting 
from asymmetry effects occurred when the first peak was tailed. These errors, which 
have previously been ignored, sometimes exceeded 50%. When only the second peak 
was tailed, the errors were less than 15%. 

Combined size-asymmetry efects 
The combined effects of size and asymmetry were studied by examining the 

overlapping peak combinations tailed peak-tailed peak, tailed peak-symmetric peak, 
and symmetric peak-tailed peak for peaks with area ratios of 0.25: 1,O.j: 1, 1:0.5, and 
1:0.25. For reasons of brevity, we will not consider all combinations in detail. Data 
and charts are available upon request. 

For peak area, in general, the errors induced by the combined size-asymmetry 
effects were additive, and thus substantially larger than for the separate effects, al- 
though occasionally a fortuitous cancellation of error was observed. (A cancellation 
of error is possible, since both effects produced positive and negative errors.) For 
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Fig. 6. Illustration of the combined effects of size and asymmetry on the measurement of peak area and 
peak height. Relative peak area (tailed peak: symmetric peak) = 4: 1. Shaded area represents the error of 
the perpendicular-drop algorithm for peak area. The errors in peak area are - 54% and + 208% for the 
tailed and symmetric peaks respectively; errors in peak height are + 0.5% and + 86.0, respectively. 

peak height, since errors due to size and asymmetry are always positive, no cancel- 
lation of error is possible. In general, errors in peak height due to combined effects 
were additive, but since size effects are several times smaller than asymmetry effects, 
the errors in peak height due to combined effects were only marginally larger than 
errors due to asymmetry effects alone. 

The largest errors observed for both parameters resulted from the overlap of 
a large highly tailed peak with a small, symmetric peak, as shown in Fig. 6 for peaks 
with an area ratio of four-to-one. As in Fig. 3, the shaded area represents the error 
of the perpendicular-drop algorithm, i.e., the amount by which the area of the tailed 
peak is underestimated and by which the area of the symmetric peak is overestimated. 
For the tailed and symmetric peaks in Fig. 6 the errors in peak area were - 54% and 
+208%; errors in peak height were +OS% and +86%. 

Improving the accuracy of quantitation 
The above discussion shows that, due to symmetry effects which have pre- 

viously been ignored, the systematic errors of current integrator-based methods for 
peak area and peak height measurement on overlapping peaks are much larger than 
previously estimated. This is particularly true for partially resolved peaks of nearly 
equal area, for which errors in the perpendicular-drop algorithm have formerly been 
assumed to be negligible. 

The best way to eliminate quantitative errors caused by overlapping peaks is 
to eliminate the overlap, i.e., change the chromatographic conditions so that the 
peaks of interest are baseline-resolved. Because this cannot always be done in prac- 
tice, it is thus desirable to consider what improvements in quantitation are possible 
wihtout an improvement in the separation. 

Empirical area equation. Since the errors in peak height and peak area mea- 
surement for overlapping peaks are a direct result of the distortion caused by the 
overlap, a logical approach would be to use or develop a quantitative method, based 
on measurements in regions of minimum distortion. In our studies, we observed 
much less distortion for the first peak than the second, as evidenced by the generally 
insignificant errors in peak height for the first peak. 

We recently developed’ 9 a set of empirical equations for the calculation of 
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Fig. 7. Summary of asymmetry effects on eqn. 3, A = 1.64 h, W,,.,, (b/~)~~.‘~‘, for two overlapping tailed 
peaks of equal area. Conditions as in Fig. 4. 

peak area for symmetric (Gaussian) and tailed (EMG) peaks. These equations were 
obtained by fitting plots of Atrue/& vs. the asymmetry factor (b/a), where Ao is the 
area calculated using a Gaussian equation. Although these equations were originally 
developed for peak modeling studies, one of them proved useful for the present study. 
The equation is 

A = 1.64 h, Wo.75 (b/~)~.” (3) 

where A is the peak area, h, is the peak height, and W,.,, and b/a are the peak width 
and asymmetry measured at 75% of the peak height, respectively. The bias of eqn. 
3 is less than f 1% for well-resolved symmetric (Gaussian) and tailed (EMG) peaks 
from r/cro = 0 to 4.2. The expected precision of eqn. 3, calculated via error propa- 
gation, is & l%, assuming a precision of & 0.5%, * 0.5%, and f 1% for h,, Wo.75, 
and b/a. 

The accuracy of eqn. 3 for overlapping peaks is shown in Fig. 7 for the tailed 
peak-tailed peak peak combination. For peak overlap (valleys) up to 45%, errors 
were less than &4% for both the first and the second peaks, except in the cases of 
extreme tailing (r/go = 3,4). In these instances, the relative errors were large for the 
second peak but less than f 1% for the first peak. 

Eqn. 3 was comparably accurate for the remaining tailed peak-tailed peak 
combinations and for all the tailed peak-symmetric peak combinations. Errors for 
the first peak never exceeded f 4%; errors for the second peak were large, as in Fig. 
7, for cases of extreme tailing (r/go = 3, 4). 

For the symmetric peakktailed peak combinations, eqn. 3 was more accurate 
for the second peak than for the first. In addition, the errors were nearly independent 
of the degree of tailing. For valleys up to 50%, errors were less than &2% for the 
second (tailed) peak regardless of asymmetry. For the first (symmetric) peak, errors 
ranged from + 5 to + 20%. 

Although we did not examine peak combinations with area ratios outside the 
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range of 1:4 to 4:1, we can safely assume that, for the larger peak of an overlapped 
pair, eqn. 3 wil be more accurate than stated above (provided the valley limits are 
not exceeded), because the distortion of the larger peak of an overlapped pair for 
peak combinations outside the range of I:4 to 4:l will be less than for combinations 
within this range. 

To summarize, for overlapping peaks with area ratios between 1:4 and 4: 1, the 
empirical area equation, eqn. 3, is accurate to within f 4% for the first peak of tailed 
peak-tailed peak or tailed peak-symmetric peak combinations, provided that the 
valley between peaks is less than 45%. For the symmetric peak-tailed peak combi- 
nation, eqn. 3 is accurate to within *2% for the second peak, if the valley is less 
than 50%. For overlapping peaks with area ratios outside the range of 1:4 and 4:1, 
eqn. 3 will be somewhat more accurate, but only for the larger peak of the overlapped 
pair. 

Combined area equation-integrator approach. By itself, eqn. 3 facilitates the 
accurate (< & 4%) quantitation of,only one peak of an overlapped pair. However, 
if an integrator is used to measure the total area of the two overlapping peaks, the 
area of the other peak can be accurately determined by subtraction, i.e., 

A other = AT - A,, (4) 

where AT is the total area provided accurately by the integrator, A,, is the area of 
the peak for which eqn. 3 is accurate, and Aother is the area of the other peak. 

The accuracy and precision by which A other can be measured is, of course, 
related to the accuracy and precision by which AT and A,, can be measured. Assum- 
ing (1) AT can be measured with much greater accuracy and precision than A,,; and 
(2) neglibible covariances, the relative error (R.E.) and relative standard deviation 
(R.S.D.) of Aother are given by 

R.E. (&her) = - [Aratio R-E* (AecJl (5) 

R.S.D. (Aother) = Aratio R.S.D. (Aeg) (6) 

where Aratio = &/&her. Thus, the accuracy and precision of the indirectly measured 

TABLE I 

RELATIVE ERROR IN PEAK HEIGHT AND PEAK AREA MEASUREMENT FOR A LARGE, 
TAILED PEAK, OVERLAPPED WITH A SMALL, SYMMETRIC PEAK* 

Parameter Relative error (%) 

Tailed peak Symmetric peak 

Peak height 0.0 + 45.6 
Peak area (perpendicular-drop) -31.1 + 117.3 
Peak area, eqns. 3 and 4 + 0.4 - 1.6 

l Tailed (EMG) peak with t/cro = 4 and area = 1. Symmetric (Gaussian) peak with area = 0.25. 
Valley between the peaks is 54% relative to the tailed peak (60% relative to the symmetric peak). 
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peak depends directly on the accuracy and precision of the area equation and on the 
area ratio of the overlapping peaks. For 0.25 <Aratio< 1, the relative accuracy and 
precision of Aother will be better than for A,, (the accuracy of A,, was not confirmed 
for Aratio < 0.25). For Aratio > 1, the accuracy and precision of Aother will be worse. 
Assuming R.E. (A,J = R.S.D. (Aeq) = f l%, Aratio can be no higher than 1O:l for 
acceptable ( f 10%) accuracy and precision of Aother. 

As described above, the combined equation-integration method for peak area 
measurement of overlapping peaks (eqns. 3 and 4) is appropriate for 0.25 < Aratio < 10. 
Although limited to pairs of peaks with area ratios in this range, this method can 
easily be implemented on programmable integrators and data systems and will im- 
prove the accuracy of area quantitation substantially in these cases. An example of 
the superior accuracy of the combined area equation-integration method for peak 
quantitation (eqns. 3 and 4) over common integrator-data system methods for peak 
height and peak area is shown in Table I for a highly tailed peak (r/rro = 4, area 
= 1) overlapped with a symmetric peak (area = 0.25). The peak combination is the 
same as illustrated in Fig. 6, exept that the peak overlap was somewhat less (valleys 
of 54% and 60% for the tailed and symmetric peaks). 

Correction factors. The true value, T, for peak area or peak height, is related 
to the observed value, 0, by the relative error, R.E. = (0- Z-)/T. Solving this equa- 
tion in terms of T yields 

T = O/(R.E. + 1) (7) 

We can regard l/(R.E. + 1) in eqn. 7 as a correction factor (C.F.) and write 

T = 0 x CF. (8) 

Correction factors can be interpolated manually or by computer from a previously 
generated look up table. Alternatively, if a sufficiently accurate functional relation- 
ship can be obtained, these correction factors can be calculated on-line using a com- 
puter. 

When only the size effect is considered (Gaussian peak shapes are assumed), 
it is possible to calculate accurate correction factors as a function of only two vari- 
ables: area ratio and degree of peak overlap (resolution, R,), i.e., 

C.F. = flAratio, peak overlap (R,)] (9) 

Correction factors based only on size effects have been calculated previously for peak 
areas11q12. However, as we have shown in this report, asymmetry effects on the quan- 
titation of overlapping peaks are frequently as important or more important than 
size effects. Thus, size-effect-only “correction factors” are generally inaccurate. 

Unfortunately, the incorporation of peak asymmetry into the correction factor, 
as shown in eqn. 10, makes the calculation and use of correction factors difficult if 
not impossible. 

CF = flA,,ti,, type of combination, peak overlap ( # R,), peak asymmetry] (10) 

First, for a given set of area ratios the number of overlapping peak combinations has 
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increased from one (symmetric-symmetric) to four (symmetric-symmetric, tailed- 
tailed, tailed-symmetric, and symmetric-tailed). Since each combination requires a 
pair of correction factors (one for each peak of the overlapped pair), eight sets of 
correction factors are now required instead of two. Second, an empirical measure of 
peak overlap must be used, since the fundamental resolution parameter, R,, can no 
longer be visually estimated (except by comparison with standard drawings for the 
hundreds of possible combinations, which is clearly impractical). Finally, the dimen- 
sionality of each set of correction factors is increased from two to four. If correction 
factors are to be interpolated from tabulated values, a four-dimensional table will be 
required instead of a two-dimensional table for each set of correction factors. If 
correction factors are to be calculated, an accurate relationship for eqn. 10 must be 
deduced, presumably by multivariate regression. (Our efforts in obtaining a satisfac- 
tory empirical relationship for eqn. 10 were unsuccessful.) 

0 ther discussion 

Implications for preparative liquid chromatography. Because asymmetry effects 
have previously been ignored, peak purity has probably been overestimated for over- 
lapping tailed peaks. In particular, if the valley is used as the cutpoint for peak 
fractions of overlapping peaks, the second compound will be highly contaminated 
with the first. To ensure the purity of the second peak, the cutpoint should be made 
more conservatively, i.e., considerably later than the valley between the peaks. 

Errors due to overlap of more than two peaks. Although we did not perform a 
simulation involving a series of overlapping peaks, the trends observed for overlap- 
ping pairs of peaks enables us to make the following predictions for a series of peaks, 
assuming that (1) the tailing is approximately the same for all peaks; (2) the peak 
areas are within a factor of 4 for neighboring peaks; and (3) all neighboring peaks 
have valleys between them. 

For the first peak of a series, the error in peak height wil be negligible, as will 
the error in peak area calculated using eqn. 3, if the valley is less than 45%. In 
contrast, the error in peak area, as determined by the perpendicular-drop algorithm, 
wil be large, especially if the peaks are highly tailed. For interior peaks, errors in 
peak height are expected to be significant, due to peak distortion from both sides. 
Errors in peak area resulting from use of eqn. 3 will be also be substantial. On the 
other hand, errors in the perpendicular-drop algorithm for peak area may or may 
not be significant. Asymmetry effects are expected to cancel, whereas size effects may 
be somewhat enhanced if the middle peak is smaller than its neighbors. Finally, for 
the last peak in a series of partially resolved tailed peaks, we expect all three mea- 
surements (peak height, peak area via perpendicular-drop, and peak area via eqn. 3) 
to be inaccurate. Note that an approach analogous to eqn. 4 (eqn. 11 below) will not 
work, because Ainterior, the area of the interior peaks, cannot always be determined 
with sufficient accuracy. 

A last = AT -Afirst - Ainterior (11) 

CONCLUSIONS 

Because peak asymmetry (tailing) has previously been ignored, the accuracy 
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of the integrator-based measurement of peak area and peak height has been sub- 
stantially overestimated for overlapping peaks. For peaks of comparable size, errors 
in the perpendicular-drop algorithm for peak area, which were formerly assumed to 
be negligible, can be greater than 50%. Errors in peak height, also frequently assumed 
to be negligible, can be greater than 40%. The combination of asymmetry effects and 
differences in relative peak size can lead to errors in peak height that exceed 80% 
and errors in peak area that exceed 200%. Baseline or near-baseline resolution is 
therefore essential for the accurate quantitation of overlapping peaks when common 
integrator-data system methods are used and one or both peaks is tailed. Alterna- 
tively, the combined use of an empirical area equation and normal integration pro- 
cedures (eqns. 3 and 4) allows accurate quantitation ( < f 4%) for overlapping peaks, 
provided that the valley between the peaks is less than 45%. The use of correction 
factors does not appear to be a viable approach whenever one or both overlapping 
peaks is tailed. 

SUPPLEMENTARY MATERIAL 

Data and charts for all the overlapping peak combinations described are avail- 
able upon request. 
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